Using the revised EM algorithm to remove noisy data for improving the one-against-the-rest method in binary text classification

نویسندگان

  • Hyoungdong Han
  • Youngjoong Ko
  • Jungyun Seo
چکیده

Automatic text classification is the problem of automatically assigning predefined categories to free text documents, thus allowing for less manual labors required by traditional classification methods. When we apply binary classification to multi-class classification for text classification, we usually use the one-against-the-rest method. In this method, if a document belongs to a particular category, the document is regarded as a positive example of that category; otherwise, the document is regarded as a negative example. Finally, each category has a positive data set and a negative data set. But, this one-against-the-rest method has a problem. That is, the documents of a negative data set are not labeled manually, while those of a positive set are labeled by human. Therefore, the negative data set probably includes a lot of noisy data. In this paper, we propose that the sliding window technique and the revised EM (Expectation Maximization) algorithm are applied to binary text classification for solving this problem. As a result, we can improve binary text classification through extracting potentially noisy documents from the negative data set using the sliding window technique and removing actually noisy documents using the revised EM algorithm. The results of our experiments showed that our method achieved better performance than the original one-against-the-rest method in all the data sets and all the classifiers used in the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Binary Text Classification Using the EM Algorithm

When we apply binary classification to multi-class classification for text classification, we use the One-Against-All method generally. However, this One-Against-All method has a problem. That is, the documents of a negative set are not labeled manually while those of a positive set are labeled by human. In this paper, we propose that the Sliding Window technique and the EM algorithm are applie...

متن کامل

Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA

With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...

متن کامل

An Improvement in Support Vector Machines Algorithm with Imperialism Competitive Algorithm for Text Documents Classification

Due to the exponential growth of electronic texts, their organization and management requires a tool to provide information and data in search of users in the shortest possible time. Thus, classification methods have become very important in recent years. In natural language processing and especially text processing, one of the most basic tasks is automatic text classification. Moreover, text ...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Manage.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2007